Autoresonant propagation of incoherent light-waves
نویسندگان
چکیده
منابع مشابه
Autoresonant propagation of incoherent light-waves.
We study, theoretically and experimentally, the evolution of optical waves with randomly-fluctuating phases in a spatially chirped nonlinear directional coupler. As the system crosses its linear resonance, we observe collective self-phase-locking (autoresonance) of all mutually-incoherent waves, each with its own pump, and simultaneous amplification until the pumps are exhausted. We show that t...
متن کاملAutoresonant dynamics of optical guided waves.
We study, theoretically and experimentally, autoresonant dynamics of optical waves in a spatially chirped nonlinear directional coupler. We show that adiabatic passage through a linear resonance in a weakly coupled light-wave system yields a sharp threshold transition to nonlinear phase locking and amplification to predetermined amplitudes. This constitutes the first observation of autoresonanc...
متن کاملStatistical theory for incoherent light propagation in nonlinear media.
A statistical approach based on the Wigner transform is proposed for the description of partially incoherent optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a nonlinear Schrödinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an incoherent plane wave lead to a Landau-like damping effect, which can st...
متن کاملEvidence of X-Shaped Propagation-Invariant Localized Light Waves
Ten years ago Durnin, Miceli, and Eberly [1] reported on the startling first experimental investigation of the socalled nondiffracting Bessel beam, which was formed from a cw laser light by an annular slit and a collimating lens. The beam was found to maintain its sharply peaked radial profile over large distances outclassing the Rayleigh range. During the decade monochromatic Bessel beams have...
متن کاملLadder Climbing and Autoresonant Acceleration of Plasma Waves.
When the background density in a bounded plasma is modulated in time, discrete modes become coupled. Interestingly, for appropriately chosen modulations, the average plasmon energy might be made to grow in a ladderlike manner, achieving upconversion or downconversion of the plasmon energy. This reversible process is identified as a classical analog of the effect known as quantum ladder climbing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.017709